Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Pseudosymmetry and phase transition in dimethyl 2,3-bis(tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-ylidene)butanedioate

Jan W. Bats,* Marc A. Grundl and A. Stephen K. Hashmi

Institut für Organische Chemie, Universität Frankfurt, Marie-Curie-Straße 11, D-60439 Frankfurt am Main, Germany
Correspondence e-mail: bats@chemie.uni-frankfurt.de
Received 29 January 2001
Accepted 28 February 2001

The crystal structure of the title compound, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}$, shows a reversible phase transition at about 178 K . The structure of the high-temperature phase contains two independent molecules related by pseudosymmetry elements. Cooling through the phase-transition temperature results in a doubling of the c axis. The low-temperature structure contains four independent molecules related by pseudosymmetry elements. The phase transition results in a rearrangement of some weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The number of very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, with $\mathrm{H} \cdots \mathrm{O}$ distances between 2.8 and $2.9 \AA$, is increased in the low-temperature structure.

Comment

The title compound, (I), shows a reversible phase transition at about 178 K . We present here the results of X-ray crystal structure analyses of both the high- and low-temperature phases, using data collected at 204 and 142 K , respectively.

(I)

The crystal structure of the high-temperature phase contains two crystallographically independent molecules, A and B. The dimensions of both molecules are very similar (Fig. 1). A close inspection of the atomic coordinates shows that the coordinates of molecule B are related to those of molecule A by the approximate relations $x_{B}=\frac{1}{2}+x_{A}$, $y_{B}=\frac{1}{4}-y_{A}$ and $z_{B}=z_{A}$. This corresponds to a localized pseudo- a-glide plane about $y=\frac{1}{8}$. Molecule B is related to symmetry equivalents of molecule A by an additional localized pseudo-translation vector of $\left(\frac{1}{2}, \frac{3}{4}, \frac{1}{2}\right)$, a localized pseudo-
inversion centre about $\left(\frac{1}{4}, \frac{3}{8}, \frac{1}{4}\right)$ and a localized pseudo-twofold screw axis about $\left(\frac{1}{4}, y, 0\right)$ with a translation vector of $b / 4$.

The C3-C7 and C4-C17 bonds have lengths of about $1.34 \AA$ and correspond to double bonds. The angle between the best planes through atoms C 3 and C 4 is $69.83(5)^{\circ}$ for both molecules A and B. Atoms $\mathrm{C} 4 A$ and $\mathrm{C} 4 B$ show small distortions from planarity: both atoms deviate by about $0.056 \AA$ from the plane through their three neighbours. Atoms C3 A and C3B are almost planar.

Each molecule shows two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, with $\mathrm{H} \cdots \mathrm{O}$ distances between 2.32 and $2.36 \AA(\mathrm{C} 8-$ $\mathrm{H} 8 \cdots \mathrm{O} 2$ and $\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O}$; Table 1). The crystal packing shows a considerable number of weak intermolecular electrostatic $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The intermolecular $\mathrm{H} \cdots \mathrm{O}$ distances are about $2.65-2.70 \AA$ and thus are rather long.

The pseudosymmetry between molecules A and B is a result of the very similar packing arrangements of both molecules. Both molecules are arranged into almost identical chains about a twofold screw axis; molecule A about ($0, y, \frac{1}{4}$) and molecule B about $\left(\frac{1}{2}, y, \frac{1}{4}\right)$. Molecules within these chains are

Figure 1
The structures of the two independent molecules of (I) at 204 K with 50% probability displacement ellipsoids, showing (a) molecule A and (b) molecule B.
connected by two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Adjacent chains displaced in the c direction form $2_{1} / c$ layers. The $2{ }_{1} / c$ layer at $-\frac{1}{4}<x<\frac{1}{4}$ consists of molecules A only

Figure 2
The crystal packing of (I) at 204 K viewed down a, showing (a) a section with $-\frac{1}{4}<x<\frac{1}{4}$ containing only molecules of type A, and (b) a section with $\frac{1}{4}<x<\frac{3}{4}$ containing only molecules of type B.
(Fig. 2a). A $\mathrm{C} 26 A-\mathrm{H} 26 A \cdots \mathrm{O} 2 A$ interaction connects adjacent chains in this layer. The $21 / c$ layer at $\frac{1}{4}<x<\frac{3}{4}$ consists of molecules B only (Fig. 2b). Adjacent chains in this layer show a displacement of $b / 2$ compared with the layer consisting of molecules A. As a result, no $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 2$ interactions are found in this layer. Two intermolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 4$ interactions connect the layers made up of molecules A and B.

A doubling of the cell volume is observed on cooling through the phase-transition temperature. Measurement of the cell constants just above and below the transition temperature showed no significant changes in the cell parameters a, b and β, while an almost exact doubling was observed for the length of the c axis.

The structure of the low-temperature phase contains four independent molecules, A, B, C and D. The dimensions of the four molecules are very similar. Again, short intramolecular $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$ and $\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 3$ contacts are found (Table 2).

The crystal packing in the low-temperature phase is rather similar to that observed in the high-temperature structure. The molecules are again arranged into chains about screw axes in the b direction (Fig. 3). Molecules A and B alternate in a chain about a pseudo-twofold screw axis about $\left(\frac{1}{4}, y, 0\right)$, molecule C forms a chain about a screw axis along $\left(\frac{1}{4}, y, \frac{1}{4}\right)$ and molecule D forms a chain about a screw axis along $\left(\frac{1}{4}, y, \frac{3}{4}\right)$. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions within these chains and intermolecular $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 4$ interactions between layers displaced by $a / 2$ are similar to those observed in the high-temperature structure.

There is, however, a striking difference between the highand low-temperature structures: each fourth chain in the lowtemperature structure is translated by $b / 2$ compared with the high-temperature structure. This results in a rearrangement of the $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 2$ interactions between neighbouring chains. The number of such interactions, however, is the same as in the high-temperature structure. Thus, there would be no overall stabilization of the structure upon cooling through the phase-transition temperature. A stabilization of the lowtemperature structure, however, may result from an increased

Figure 3

The crystal packing of (I) at 142 K viewed down a showing a section with $0<x<\frac{1}{2}$.
number of very long intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, with $\mathrm{H} \cdots \mathrm{O}$ distances in the range $2.8-2.9 \AA$. Five such interactions are found in the high-temperature structure. Due to the cell doubling, there should be ten in the low-temperature structure. In fact, the low-temperature structure shows 14 such weak interactions, 11 of which have $\mathrm{C}-\mathrm{H}-\mathrm{O}$ angles in the range $150-170^{\circ}$. Desiraju \& Steiner (1999) have shown that such long $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions may play a significant role in crystal packing.

Experimental

Compound (I) was obtained by a procedure similar to that described by Jefferson \& Warkentin (1992) for other compounds. 1-Acetyl-2adamantenylidenehydrazone was prepared by refluxing a solution of acetylhydrazine $(2.47 \mathrm{~g}, \quad 33.3 \mathrm{mmol})$ and adamantone $(5.00 \mathrm{~g}$, $33.3 \mathrm{mmol})$ in ethanol (20 ml), with the addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}(4.00 \mathrm{~g}$, 28.2 mmol) and catalytic amounts of acetic acid ($0.1 \mathrm{ml}, 1.75 \mathrm{mmol}$), for 24 h . The solution was then removed under vacuum and the residue was recrystallized from ethanol to afford the acetylhydrazone $(4.77 \mathrm{~g}, 23.1 \mathrm{mmol})$ in 69% yield as a mixture of its E and Z isomers. Reaction of the latter acetylhydrazone ($4.47 \mathrm{~g}, 21.7 \mathrm{mmol}$) and lead tetraacetate ($10.0 \mathrm{~g}, 22.6 \mathrm{mmol}$) in absolute methanol $(94 \mathrm{ml})$ afforded 5 -methoxy-5-methylspiro(Δ^{3}-1,3,4-oxadiazolin-2, 2^{\prime} tricyclo[3.3.1.1 ${ }^{3,7}$]decane) ($1.43 \mathrm{~g}, 6.05 \mathrm{mmol}, 28 \%$) as a racemic mixture. A solution of the latter oxadiazoline ($1.00 \mathrm{~g}, 4.23 \mathrm{mmol}$) and dimethyl acetylenedicarboxylate ($1.50 \mathrm{~g}, 10.6 \mathrm{mmol}$) in diethyl ether $(200 \mathrm{ml})$ was irradiated with a medium pressure mercury lamp at room temperature for 11 h . After the volatiles had been removed in vacuo, column chromatography (silica gel, hexane/ethyl acetate 30:1) provided 296 mg (34\%) of (I). Single crystals of (I) were obtained by slow evaporation of a solution in pentane/dichloromethane at 273 K .

Compound (I) at 204 K

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}$
$M_{r}=410.53$
Monoclinic, $P 2_{1} / c$
$a=13.5686$ (9) \AA
$b=16.0982(18) \AA$
$c=19.615$ (3) A
$\beta=91.086$ (12) ${ }^{\circ}$
$V=4283.7$ (8) \AA^{3}
$Z=8$

Data collection

Siemens SMART diffractometer
ω scans
Absorption correction: numerical using six faces (SHELXTL; Sheldrick, 1996)
$T_{\text {min }}=0.959, T_{\text {max }}=0.971$
74545 measured reflections
12064 independent reflections
7584 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.159$
$S=1.14$
12064 reflections
545 parameters
H-atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (I) at 204 K .

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} 2 A$	0.99	2.35	$3.014(2)$	123
$\mathrm{C} 8 B-\mathrm{H} 8 B \cdots \mathrm{O} 2 B$	0.99	2.36	$3.009(2)$	123
$\mathrm{C} 18 A-\mathrm{H} 18 A \cdots \mathrm{O} 3 A$	0.99	2.33	$3.005(2)$	124
$\mathrm{C} 18 B-\mathrm{H} 18 B \cdots \mathrm{O} 3 B$	0.99	2.32	$3.002(2)$	125
$\mathrm{C} 6 A-\mathrm{H} 6 B \cdots \mathrm{O} 4 B^{\mathrm{i}}$	0.97	2.64	$3.472(2)$	143
$\mathrm{C} 6 B-\mathrm{H} 6 E \cdots \mathrm{O} 4 A^{\mathrm{ii}}$	0.97	2.62	$3.481(2)$	149
$\mathrm{C} 13 A-\mathrm{H} 13 A \cdots \mathrm{O} 4 A^{\mathrm{ii}}$	0.98	2.65	$3.379(2)$	131
$\mathrm{C} 13 B-\mathrm{H} 13 C \cdots \mathrm{O} 4 B^{\mathrm{iii}}$	0.98	2.69	$3.424(2)$	132
$\mathrm{C} 23 A-\mathrm{H} 23 B \cdots \mathrm{O} 4 A^{\text {ii }}$	0.98	2.73	$3.499(2)$	136
$\mathrm{C} 23 B-\mathrm{H} 23 D \cdots \mathrm{O} 4 B^{\text {iii }}$	0.98	2.66	$3.405(2)$	133
$\mathrm{C} 26 A-\mathrm{H} 26 A \cdots \mathrm{O} 2 A^{\text {iv }}$	0.98	2.63	$3.591(2)$	167

Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

Compound (I) at 142 K

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}$	$D_{x}=1.289 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=410.53$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=13.5304(15) \AA$	Cell parameters from 211
$b=16.005(2) \AA$	reflections $c=39.089(7) \AA$ $\beta=91.147(12)^{\circ}$ $V=8463(2) \AA^{3}$
$Z=16$	$\mu=0.23^{\circ}$
	$T=142(2) \mathrm{mm}^{-1}$
Data collection	Block, colourless
Siemens SMART diffractometer	$0.52 \times 0.44 \times 0.40 \mathrm{~mm}$
ω scans	
Absorption correction: numerical	$R_{\text {int }}=0.082$
using six faces $(S H E L X T L ;$	$h=-17 \rightarrow 18$
Sheldrick, 1996)	$k=-24 \rightarrow 21$
$T_{\text {min }}=0.960, T_{\text {max }}=0.971$	$l=-58 \rightarrow 50$
94848 measured reflections	599 standard reflections
26 202 independent reflections	frequency: 600 min
14015 reflections with $I>2 \sigma(I)$	intensity decay: none

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (I) at 142 K.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8 A-\mathrm{H} 8 A \cdots \mathrm{O} 2 A$	1.00	2.35	$3.003(4)$	122
$\mathrm{C} 8 B-\mathrm{H} 8 B \cdots \mathrm{O} 2 B$	1.00	2.34	$3.019(4)$	125
$\mathrm{C} 8 C-\mathrm{H} 8 C \cdots \mathrm{O} 2 C$	1.00	2.34	$3.012(3)$	124
$\mathrm{C} 8 D-\mathrm{H} 8 D \cdots \mathrm{O} 2 D$	1.00	2.35	$3.008(3)$	123
$\mathrm{C} 18 A-\mathrm{H} 18 A \cdots \mathrm{O} 3 A$	1.00	2.34	$2.999(4)$	123
$\mathrm{C} 18 B-\mathrm{H} 18 B \cdots \mathrm{O} 3 B$	1.00	2.31	$3.002(3)$	126
$\mathrm{C} 18 C-\mathrm{H} 18 C \cdots \mathrm{O} 3 C$	1.00	2.33	$3.006(3)$	124
$\mathrm{C} 18 D-\mathrm{H} 18 D \cdots \mathrm{O} 3 D$	1.00	2.32	$3.005(3)$	125
$\mathrm{C} 6 A-\mathrm{H} 6 C \cdots \mathrm{O} 4 A^{\mathrm{i}}$	0.98	2.58	$3.463(4)$	149
$\mathrm{C} 6 B-\mathrm{H} 6 F \cdots \mathrm{O} 4 B^{\text {ii }}$	0.98	2.51	$3.440(4)$	159
$\mathrm{C} 6 C-\mathrm{H} 6 \cdots \mathrm{O} 4 D^{\text {iii }}$	0.98	2.66	$3.454(4)$	138
$\mathrm{C} 6 D-\mathrm{H} 6 K \cdots \mathrm{O} 4 C^{\text {iv }}$	0.98	2.64	$3.460(4)$	141
$\mathrm{C} 13 A-\mathrm{H} 13 B \cdots \mathrm{O} 4 B^{\mathrm{v}}$	0.99	2.69	$3.437(4)$	133
$\mathrm{C} 13 B-\mathrm{H} 13 D \cdots \mathrm{O} 4 A^{\mathrm{v}}$	0.99	2.62	$3.334(4)$	129
$\mathrm{C} 13 C-\mathrm{H} 13 E \cdots \mathrm{O} 4 C^{\text {vi }}$	0.99	2.61	$3.353(4)$	132
$\mathrm{C} 13 D-\mathrm{H} 13 G \cdots \mathrm{O} 4 D^{\text {vii }}$	0.99	2.65	$3.391(4)$	132
$\mathrm{C} 23 A-\mathrm{H} 23 B \cdots \mathrm{O} 4 B^{\mathrm{v}}$	0.99	2.70	$3.499(4)$	138
$\mathrm{C} 23 B-\mathrm{H} 23 C \cdots \mathrm{O} 4 A^{\mathrm{v}}$	0.99	2.63	$3.364(4)$	131
$\mathrm{C} 23 C-\mathrm{H} 23 F \cdots \mathrm{O} 4 C^{\text {vi }}$	0.99	2.69	$3.469(4)$	135
$\mathrm{C} 23 D-\mathrm{H} 23 H \cdots \mathrm{O} 4 D^{\text {vii }}$	0.99	2.62	$3.391(3)$	134
$\mathrm{C} 26 A-\mathrm{H} 26 B \cdots \mathrm{O} 2 C$	0.99	2.62	$3.590(3)$	166
$\mathrm{C} 26 C-\mathrm{H} 26 E \cdots \mathrm{O} 2 B^{\text {viii }}$	0.99	2.58	$3.556(3)$	167

[^0]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.100$
$w R\left(F^{2}\right)=0.246$
$S=1.16$
26202 reflections
1089 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.06 P)^{2}+13 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\max }=0.73 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\max }=0.73 \mathrm{e}_{\min }=-0.35 \mathrm{e}^{-3}$

The $h 0 l$ reflections at 204 K were absent for l odd and were extremely weak, but were not absent for h odd. As $0 k 0$ reflections were absent for k odd, the space group could be determined as $P 2_{1} / c$. The $h 0 l$ reflections with h odd or l odd at 142 K showed no significant net intensity. Thus, the space group could not be derived from the systematically absent reflections alone. The structure determination at 142 K was attempted with $S H E L X S 97$ (Sheldrick, 1997) using the TREF 100000 option in space groups $P 2_{1} / a, P 2_{1} / c$ and $P 2_{1} / n$. No meaningful solution was obtained in $P 2_{1} / c$, a solution corresponding to a partly disordered structure was obtained in $P 2_{1} / a$ and a promising solution with four independent ordered molecules was obtained in $P 2_{1} / n$. Thus, $P 2_{1} / n$ was taken as the correct space group. The H atoms were taken from a difference Fourier synthesis and were refined with fixed individual displacement parameters $\left[U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ and $\left.U(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right]$, using a riding model with fixed distances: methyl, secondary and primary $\mathrm{H}-\mathrm{C}$ distances of $0.97,0.98$ and
$0.99 \AA$ at 204 K , and $0.98,0.99$ and $1.00 \AA$ at 142 K , respectively. The torsion angles about the $\mathrm{C}-\mathrm{O}$ bonds of the methoxy groups were refined.

For (I) at both temperatures, data collection: $S M A R T$ (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1996); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1459). Services for accessing these data are described at the back of the journal.

References

Desiraju, G. R. \& Steiner, T. (1999). Editors. The Weak Hydrogen Bond, ch. 2. Oxford University Press.
Jefferson, E. A. \& Warkentin, J. (1992). J. Am. Chem. Soc. 114, 6318-6325.
Sheldrick, G. M. (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 1-y, 2-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $\quad x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z ; \quad$ (v) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (vi) $\quad \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \quad$ (vii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (viii) $x, y, z-1$.

